The Ct Virtual Machine: Enabling High Performance
Domain Specific Languages and Libraries

Anwar Ghuloum

Software & Services Group, Developer Products Division

(intel'
o) are

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Agenda

e Ct Primer
e The Ct VM

inteD Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.
Products

*Other brands and names are the property of their respective owners.

What is Intel Ct Technology? (intel.

e Ct adds parallel collection objects & methods to C++

— Library interface and is fully ANSI/ISO-compliant (works with ICC, VC++, GCC)
Ct abstracts away architectural details

— Vector ISA width / Core count / Memory model / Cache sizes

— Focus on what to do, not how to do it
— Sequential semantics

Ct forward-scales software written today

— Ctis designed to be dynamically retargetable to SSE, AVX, LRB, ...
Ct is safe, by default

— ...but with expert controls to override for performance

Programmers think sequential, not parallel

(i/ﬂter Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Collection Objects

Vec are the basic type of parallel collection object
* a handle to a value

* managed by the runtime

* flat, multidimensional, or irregularly nested

* created and manipulated exclusively via the API
—determinism and isolation

—overrides and control for extra performance

Provides Safety by Default

®

#include "ct.h“
using namespace Ct;
int main(int argc, char *argv[])
{
// A Vec declaration must specify a base
// type: Vec<basetype> aTypedVector;
// For example, DoubleVec can refer to any
// vector of doubles.
Vec<F64> DoubleVec;

// A regular 2 dimensional vector:
Vec2D<I8> 2DMatrix (“{{0,1,2}, {3,4,5}, {6,7,8}}");

//An irregularly nested vector:

VecNested<I32> IrregularVector (“{{0,1,2},
{3,4}, {5,6,7,8}}");

return O;

inteD Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

Software
Products

4 *Other brands and names are the property of their respective owners.

Parallel Operations on Ct Collections i el')

The Ct Runtime Automates This Transformation

Vector Processing

. .
\ \ / i | | I |
v v vV V¥
= / \
FMADD
INC
IMP
v

E1t<F32> kernel (E1t<F32> a, b, c, NVec<F32>native (NVec<F32> .) {
d) {

Vec<F32> A, B, C, D; _asm__ {

return a + (b/c)*d;

Kernel Processing Native/Intrinsic Coding

i A = map (k 1), B, C, D);
Linear algebra, global data piblitin~l X)

R Embarrassingly parallel
movemen mmunication p 10
ovement/co Qicaiic shaders, image processing

Vec<F32> A, B, C,

(inteD) Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.
Products

*Other brands and names are the property of their respective owners.

3D order-6 stencil

-
template<typename T> L*
£ void £d3DStencilC(T *in, T *out, int nx, int ny, int nz)
for (int i = 3; i < nx-3; i++){
for (int j = 3; j < ny-3; j++){
for (int k = 3; k < nz-3; k++){

Software

El void bench3DStencilC()

out [k+j*nz+i¥*nz*ny] = 2 * in[k+j*nz+i*nz*ny] - out[k+j*nz+i*nz¥*ny])
+ coeff[0] * in[k+3*nz+i*nz*ny]
+ coeff[1l] *

(in[k+3j*nz+ (i-1)*nz*ny)] + in[k+3j*nz+ (i+1l) *nz*ny])

+ in[k+(J-1)*nz+i*nz*ny] + in[k+(Jj+1)*nz+i*nz*ny]

+ in[(k-1)+j*nz+i*nz*ny] + in[(k+1l)+j*nz+i*nz*ny)])
+ coeff[2] *

(in[k+3*nz+ (i-2)*nz*ny)] + in[k+3j*nz+ (i+2)*nz*ny])

+ in[k+(J-2)*nz+i*nz*ny] + in[k+(j+2)*nz+i*nz*ny]

+ in[(k-2)+j*nz+i*nz*ny)] + in[(k+2)+j*nz+i*nz*ny)])
+ coeff[3] *

(in[k+3*nz+(i-3)*nz*ny] + in[k+3j*nz+ (i+3) *nz*ny]

+ in[k+ (3-3)*nz+i*nz*ny)] + in[k+(3+3)*nz+i*nz*ny])

+ in[(k-3)+j*nz+i*nz*ny] + in[(k+3)+j*nz+i*nz*ny])’

I}

fd3DStencilC(in, resC, NX, NY, NZ):

Original Code

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

intel.

LempralesLypename 1>
F void stencil3DMap (E1t3D<T> in,
{

E1t3D<T> &out)

//' in C(i, 3, k) => Ct(k, i, 3)
T tropOut = 2 * (T)in - (T)out
+ coeff[0] * (T)in

+ coeff[1] ~*

(in(0, 0, -1) + in(0, 0O, +1)

+ in(-1, O, O) + in(+1, O, 0)

+ in(0, -1, 0) + in(0, +1, 0))
+ coeff[2] *

(in(0, 0, -2) + in(0, 0O, +2)

+ in(-2, 0, 0) + in(+2, 0, 0)

+ in(0, -2, 0) + in(0, +2, 0))
+ coeff([3] *

(in(0, 0, -3) + in(0, 0O, +3)

+ in(-3, 0, 0) + in(+3, 0, 0)

+ in(0, -3, 0) + in(0, +3, 0)):

out = tmpOut ,'|

template<typename priT>
El void f£d3DStencilCt (priT *out)
{
typedef typename Pri2CtType<priT>::CtType T;

//Y in, (x, v, z) => (v(Row), z(Col), x(Page))
Vec3D<T> vin(in, _NX, _NY, _NZ):;

//! out, (x, v, z) => (v(Row), z(Col), x(Page))
Vec3D<T> vout (out, _NX, _NY, _Nz):;

rmap (stencil3DMap<T>) (vin, wvout):;

}
El void bench3DStencilCct ()

{
fd3DStencilCt (resCct) ;

Ct Code

Back Projection

5.
-
4"

1
Bl void backProjection(float *prArr, float *imghrr) B void backProjectImp (Vec2D<F32> vProj, Vec2D<F32> &vImag)

{ {
for (int iy = 0; iy < numPixelsH; iy++) { //! pre-compute sin, cos out of loop
float yv = (float)iy + yMin; Vec<F32> idx = index<F32>(0.0f, (float)numingles, 1.0f);
for (int ix = 0; ix < numPixelsW; ix++) { Vec<F32> vAngle = idx * aveAngle;
float x = (float)ix + xMin; Vec<F32> wvSinAng = sin(vAngle);
float sum = 0.0f; Vec<F32> wvCosAng = cos(vAngle);
//! For each pixel, sum of scans from all angles
for (int thta = 0; thta < numAngles; thta ++) { Vec2D<F32> idX = index2D<F32>(xMin, numPixelsW, 1.0f, numPixelsH, (Bool)true):;
Vec2D<F32> idY = index2D<F32>(yMin, numPixelsH, 1.0f, numPixelsW, (Bool)false)
float angle = thta * aveAngle; vImag = Vec2D<F32>::create (0.0f, numPixelsH, numPixelsW):
float sinAng = sin(angle);
float cosAng = cos(angle); Vec2D<Size> indxI = Vec2D<Size>::create (-1, numPixelsH, numPixelsW):;
float XN = (x - xCen)/xCen; //! New coordinate
float yN = (y - vCen)/vCen; Size i;
float t = xN * cosAng + yN * sinAng; //' Offset distance //! For each pixel, sum of scans from all angles
float mb = t * midPoint + midPoint; //! RBctual receiver| = _for(i = (_Size)0, i < numAngles, i++){
int 1p = static_cast<int>(floorf (mb)): //! Lower reciever|_
int hb = static_cast<int>(ceilf (mb)): //! Higher recieverx| F32 cosAng(vCosAng[il):
F32 sinAng (vSinAng[i]):
float frac = mb - 1b; //! Factor for line
if (1b >= numRays) 1lb -= 1; Vec2D<F32> pXn = (idX - xCen)/xCen; //!' New coordi:
if (hb >= numRays) hb —-= 1; Vec2D<F32> p¥n = (idY - yCen)/yCen;
Vec2D<F32> pT = pXn * cosAng + p¥Yn * sinAng; //' Offset dis-
if ((1b >= 0) && (1lb < numRays)) { Vec2D<F32> vMb = pT * midPoint + midPoint; //' Bctual rec:
//' 1b's weight is (1.0f-frac) Vec2D<F32> vLb = floor (vMb); //! Lower rec:
sum += (1.0f-frac) * prArr([thta*numRays+lb]:’ //' BAccumulate proj Vec2D<F32> vHb = ceiling(vMb): //' Higher rec:
}
if ((hb >= 0) && (hb < numRays)) { — Vec2D<F32> vFrac = vMb - vLb; //!' Factor for
//!' hb's weight is frac
sum += frac * prArr[thta*numRays+hb]:; //!' BAccumulate proj Vec2D<Size> vLbi = (Vec2D<Size>)vLb;
3 Vec2D<Size> vHbi = (Vec2D<Size>)vHb;
//!' Output result
imgArr [iy*numPixelsW+ix] = sum; indxI += 1;
¥}//!' End of for(thta) //' vLb's weight is (1.0f-vFrac)
¥}//! End of for (ix) wvImag += (-vFrac + 1.0f) * vProj[Vec2D<Tuple<2,Size> >(indxI, vLbi)]:
}//! End of for(iy)
¥ //! vHb's weight is vFrac

vImag += vFrac * vProj[Vec2D<Tuple<2, Size> >(indxI, vHbi)]:

r }_endFor

Original Code Ct Code

Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.
Products

*Other brands and names are the property of their respective owners.

How Does it Really Work? (intel.

Ct is really a high-level APlIs...

...that streams opcodes to an optimizing virtual machine
The source (front-end) can be anything:

e A new language

e A bytecode parser
— Experiments with Python, HLSL

e An application-specific library
e A compiler front-end

(intel Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

The Ct VM (intel)’

(A Ct APIC
verage C++
Developer) ’cher La;'lguages!
v .
(L\a’uh;lg{gge -_> Ct+ Opcode API II
Implementor) ,
CVI Ct JIT/Compiler 7
Hand /
uning) /

IA-based Virtual ISA Debu Memor
Abstraction
=Ny Backend JIT/Compiler Task/Threading Runtime

[i/jnte,m Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.
Products

*Other brands and names are the property of their respective owners.

Runtime Evaluation Model intel)

ACT

float srcl[], src2[], dest][]:;

IR Build

Vec<F32>a(srcl,N), b(src2,N);

rcall (foo) (a, b) V i
foo (Vec<F32> a, Vec<F32> b) { v
Vec<F32> c = a + b;
X
*

Vec<F32> d c a;
return;

Memory Manager Parallel Runtime
a

Ct Dynamic
Engine

* CVI = Converged Vector Intrinsics All Intel Pla

:i/jnte,- Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.
Products

*Other brands and names are the property of their respective owners.

Why Does this Matter for C/C++ Developers? (intel.

It’s not just a single kernel...

* Productivity craters when many kernels have to be tuned

— Focusing energy on 1 algorithm makes sense, if it is the dominant
algorithm

...in one place

e Widely used libraries often give up performance for well
designed generic interfaces

= Inherently spreads compute across methods

(intel Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Performance Without De-architecting Software (intel'

e Software is often architected for reuse,

replacement, extension:
— Use of abstract classes, virtual function calls, C+

+ iterators, indirection is the norm...

- e “Performance paths” are often spread across
S . .
Ssal ™ many objects and files
\\\ "4
" Performance Paths
o
¢” /,
’ﬂ V2
’,¢ .
o

(i/ﬂter Software & Services Group, Developer Products Division

Software Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Performance Without De-architecting Software

e Performance tools typically want
to see everything!
% e You look at all possible/likely
paths
— Brittle
— Difficult to maintain

— Difficult to extend
— Difficult to program

4
’/
=" De-architecting
for performance

-

-
-

—

Software & Services Group, Developer Products Division

Copyright © 2009, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

(intel'

Performance Without De-architecting Software (intel'

e Combine good software
‘ — — practices and
performance with Ct:
— Pepper your models/
classes with Ct

— Ct’s VM takes care of
dynamically gathering the
performance paths

Software & Services Group, Developer Products Division

(intel'
o) are

Copyright © 2009, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Concluding Remarks (intel.

e Managed/dynamic runtimes are no longer synonymous with
poor performance

—You don’t have to sacrifice productivity for performance

e The pace of credible language emergence will be sustained
— A new language every 18 months

— It may even grow, driven by architectural/application
innovation and specialization

Software & Services Group, Developer Products Division

(intel'
o) are

Copyright © 2009, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Software & Services Group, Developer Products Division

(in el)
Software Copyright © 2009, Intel Corporation. All rights reserved.

Products

*Other brands and names are the property of their respective owners.

